Евро-Азиатский институт образовательных технологий Eurasian Institute of educational technologies
Saturday, 2020-09-19, 9:17 PM
Site menu
Section categories
Археология- Аrcheology
Ботаника- Вotany
География- Geography
Зоология- Zoology
История- Нistory
История науки- Нistory of science
Медицина- Мedicine
Образование- Education
Общая биология- General biology
Общество- Society
Палеонтология- Рaleontology
Право- Jurisprudence
Психология- Рsychology
Технологии- Technology
Физика- Physics
Химия- Сhemistry
Экология- Еcology
Экономика- Еconomy
Our poll
Оцените наш сайт/ Please rate our website
Total of answers: 1366
Statistics

Total online: 1
Guests: 1
Users: 0

3:18 PM
Химики получили полупроводник слоем в три атома High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity

Получение тонких плёнок из полупроводниковых материалов похоже на рост кристаллов льда на зимних окнах – при подходящих условиях полупроводник растет, образуя плоские кристаллы, которые медленно сливаются друг с другом, формируя непрерывную плёнку.

Химики получили полупроводник слоем в три атомаРисунок из Nature

Такой процесс получения тонких слоев уже хорошо зарекомендовал себя для традиционных полупроводников, таких как кремний или арсенид галлия – основы современной микроэлектроники, однако исследователи из Корнеллского университета поставили новый рекорд в толщине полупроводникового слоя. Исследователи продемонстрировали способ получения нового типа полупроводниковой пленки, сохраняющей свои электронные свойства, несмотря на то, что толщина ее составляет всего несколько атомов.

Трёхатомная плёнка из дисульфида молибдена была получена в лаборатории Цзивуна Парка (Jiwoong Park). Парк заявляет, что электронные свойства новых материалов сравнимы со свойствами монокристаллов дисульфида молибдена, но вместо крошечного кристалла исследователями получена пленка шириной примерно в 10 см.

Дисульфид молибдена в последнее время привлекает исследователей благодаря своим интересным электрическим свойствам, однако до недавнего времени кристаллы дисульфида молибдена росли только отдельными островками. Очевидно, что получение ровных плоских ультратонких листов этого материала является желаемой целью, достижение которой может стать основой для дизайна новых электронных устройств.

Исследователям удалось превратить «архипелаг» дисульфида молибдена в «континент» с помощью методики, получившей название «химическое осаждение паров металлоорганических соединений» [metal organic chemical vapor deposition (MOCVD)]. Уже применяющаяся в промышленности, хотя и не для дисульфида молибдена, методика основана на том, что порошкообразный субстрат испаряют, и осаждают атомы или молекулы на подложку слой за слоем.

Исследователи из группы Парка систематически оптимизировали методику получения пленок, изменяя различные условия – температуру и скорость подачи паров. Было обнаружено, что кристаллы растут, объединяясь и формируя пленку, но только в полностью сухой атмосфере и в полностью сухих условиях. Полученные пленки были охарактеризованы с помощью просвечивающей электронной микроскопии и других методов.

Исследователи из группы Парка также продемонстрировали эффективность предложенной ими методики, чередуя слои дисульфида молибдена и диоксида кремния (последний наносили с помощью обычного метода фотолитографии). Эксперименты показали, что эти слои толщиной в три атома могут быть получены и для многоуровневых электронных устройств исключительно малой толщины.

Исследователи предполагают, что метод MOCVD может применяться для получения различных тонких пленок – достаточно только изменить прекурсор и условия нанесения, что и было продемонстрировано ими же на примере получения пленок дисульфида вольфрама (эти пленки отличались от пленок из MoS2 цветом и электронными свойствами). Эти обстоятельства дают надежду на получение пленок атомной толщины с различными свойствами, из которых можно будет получать самые разнообразные устройства. Парк говорит, что две полученные плёнки – лишь первый элемент в палитре материалов, которые он хочет получить.

По материалам Nature
Источник: chemport.ru

 

The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology1, 2, 3. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers4, provide ideal semiconducting materials with high electrical carrier mobility5, 6, 7, 8, 9, 10, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect11, bandgap modulation12, indirect-to-direct bandgap transition13, piezoelectricity14 and valleytronics15. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal–organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm2 V−1 s−1 at room temperature and 114 cm2 V−1 s−1 at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three-dimensional circuitry. Our work is a step towards the realization of atomically thin integrated circuitry.

http://www.nature.com/nature/journal/v520/n7549/full/nature14417.html

Category: Химия- Сhemistry | Added by: semen_ivanov_1985
Log In
Search
Calendar
«  September 2016  »
SuMoTuWeThFrSa
    123
45678910
11121314151617
18192021222324
252627282930
Организации / Оrganizations
Полезные ссылки / Useful links